

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International Advanced Level in Chemistry (WCH05) Paper 01 General Principles of Chemistry II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code 46665_MS* All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	D		(1)

Question Number	Correct Answer	Reject	Mark
2	В		(1)

Question Number	Correct Answer	Reject	Mark
3(a)	В		(1)

Question Number	Correct Answer	Reject	Mark
3(b)	D		(1)

Question Number	Correct Answer	Reject	Mark
4(a)	С		(1)

Question Number	Correct Answer	Reject	Mark
4(b)	D		(1)

Question Number	Correct Answer	Reject	Mark
5	С		(1)

Question Number	Correct Answer	Reject	Mark
6	С		(1)

Question Number	Correct Answer	Reject	Mark
7	С		(1)

Question Number	Correct Answer	Reject	Mark
8	A		(1)

Question Number	Correct Answer	Reject	Mark
9	D		(1)

Number	orrect Answer	Reject	Mark
10 A			(1)

Question Number	Correct Answer	Reject	Mark
11	С		(1)

Question Number	Correct Answer	Reject	Mark
12	В		(1)

Question Number	Correct Answer	Reject	Mark
13	А		(1)

Question Number	Correct Answer	Reject	Mark
14	В		(1)

Question Number	Correct Answer	Reject	Mark
15	A		(1)

Question Number	Correct Answer	Reject	Mark
16	A		(1)

Question Number	Correct Answer	Reject	Mark
17	С		(1)

Question Number	Correct Answer	Reject	Mark
18	A		(1)

Section B

Question Number	Acceptable Answers	Reject	Mark
19*(a)	ALLOW reverse arguments for Kekule structure Any three points from	Additional incorrect points	(3)
	Type of reaction Benzene reacts by (mostly electrophilic) substitution OR does not react by (electrophilic) addition	Nucleophilic substitution	
	OR Benzene does not react like alkenes / does not decolourise bromine water		
	ALLOW Other suitable reactions / benzene needs a catalyst /halogen carrier to react with bromine (1)		
	Di-substitution There are only 3 isomers of di-substituted compounds (not 4)		
	OR Some di-substituted compounds are the same, e.g. 1,2 and 1,6 (1)		
	Thermochemical Benzene's (standard) enthalpy (change) of hydrogenation is less exothermic than if	Lower / just `different'	
	it had (three localised C=C) double bonds / is not three times the value for three (localised C=C) double bonds	hydration	
	ALLOW Benzene is more stable by $\sim 150 \text{ kJ mol}^{-1}$	Lower / just `different'	
	OR stated enthalpies (of hydrogenation) -205 to -210 kJ mol ⁻¹ for benzene and -360 kJ mol ⁻¹ for 3 (localised C=C) double bonds	Just "less"	
	OR (Standard) enthalpy (change) of combustion is less exothermic than if it had three (localised C=C) double bonds		

		-
ALLOW		
(Standard) enthalpy (change) of formation of benzene is less endothermic than that of		
"cyclohexa-1,3,5-triene" (1)		
IGNORE Just 'thermodynamically more stable'	C-H bond	
X-ray diffraction – does not need to be mentioned		
The C-C bond lengths in benzene are mid- way between that of a single bond and a double bond / are all the same length		
OR Benzene is a regular hexagon (and Kekule structure is not) (1)		
IGNORE Bond angles are the same		
Infrared The infrared spectrum for benzene has a peak for an aromatic C=C at a different wavenumber / absorption / frequency to an alkene C=C		
OR Benzene has peaks at 1600, 1580, 1500, 1450 (cm–1) rather than 1669 – 1645 (cm–1)		
ALLOW Benzene has no peak for alkene C=C / 1669 - 1645 (cm-1) (1)		
IGNORE different C-H absorptions / just `different peaks to alkenes'		
IGNORE References to NMR		
Electron density map Benzene shows an even spread of electrons (1)		

Question Number	Acceptable Answers	Reject	Mark
19(b)(i)	$H_2SO_4 + HNO_3 \rightarrow NO_2^+ + H_2O + HSO_4^-$		(4)
	OR		
	$H_2SO_4 + HNO_3 \rightarrow H_2NO_3^+ + HSO_4^-$ and		
	$H_2NO_3^+ \rightarrow NO_2^+ + H_2O$ OR		
	$2H_2SO_4 + HNO_3 \rightarrow NO_2 + H_3O^+ + 2HSO_4^-$ IGNORE state symbols, even if incorrect (1)		
	$()^{(i)} NO_2^+ \longrightarrow (+)^{H} NO_2$ (i)	Half arrow heads	
	$(\overset{(i)}{+} \overset{(HSQ_1]}{\longrightarrow}) (\overset{NO_2}{\longrightarrow} + [H^{\dagger}/H_2SO_4]$		
	Curly arrow from on or within the circle to N of NO_2^+	Curly arrow on or outside the hexagon	
	ALLOW curly arrow from anywhere within the hexagon		
	ALLOW curly arrow towards any part of the		
	NO_2^+ , including to the + charge (1)		
	Intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon and some part of the positive charge must be within the horseshoe (1)	Dotted bonds to H and NO2 unless as part of a 3D structure	
	Curly arrow from C-H bond to anywhere in the hexagon reforming the delocalised structure (1)	Curly arrow from H	
	Correct Kekulé structures score full marks		
	() " - CHNO2 (1)		
	$(\mathcal{T}_{(1)}^{H} \rightarrow (\mathcal{T}_{(2)}^{HO_{2}} (H))$		

Question Number	Acceptable Answers	Reject	Mark
19(b)(ii)	Higher temperature causes multiple substitution of NO2 groups / formation of dinitrobenzene / formation of trinitrobenzene ALLOW further nitration / substitution (1) IGNORE decomposition of benzene / nitrobenzene / addition of NO2 groups At lower temperature reaction is (too) slow(1) IGNORE References to activation energy / reaction does not occur at low temperature	Different isomers of nitrobenzene	(2)

Question Number	Acceptable Answers	Reject	Mark
19(c)(i)	OH + 3Br ₂	OH-C of benzene on Ihs or rhs	(2)
	Formula of organic product (1)		
	Rest of equation correct (1)		
	ALLOW Br on any 3 carbon atoms		
	ALLOW C6H5OH + $3Br_2 \rightarrow C6H_2(OH)Br_3 + 3HBr forboth marks, allow C6H_2(Br_3)OH, ignoremissing brackets$		
	ALLOW correct balanced equations to form mono or di substituted product for 1 mark		
	ALLOW Kekulé structures		
	IGNORE position of bond to OH if vertically above or below the ring / name of product / state symbol		

Question Number	Acceptable Answers	Reject	Mark
Number * 19(c)(ii)	MP1 Lone pair of electrons on oxygen (may be shown on a diagram) and EITHER Overlaps with pi cloud /delocalised electrons / delocalised system OR Feeds into / donates into / interacts with (benzene) ring /delocalised electrons / delocalised system OR Increases the electron density of the (benzene) ring (1) MP2 (Increased electron density) makes the ring more susceptible to electrophilic attack ALLOW phenol is a better nucleophile (1)	More electro- negative	2

10(d)(i) If name and formula are given, both (2)	Question Number	Acceptable Answers	Reject	Mark
19(d)(1) If hame and formula are given, both (2) must be correct Just Ethanoyl chloride / CH ₃ COCl (1) aluminium chloride / AlCl ₃ / iron(III) chloride / FeCl ₃ Additional Conditional on correct reagent or a 'near miss' eg acyl chloride ALLOW corresponding bromides (1) NOTE Reagent and catalyst in either order and (1) NOTE Reagent and catalyst / Lewis acid catalyst / any solvent mentioned (1)	19(d)(i)	Ethanoyl chloride / CH ₃ COCl (1) aluminium chloride / AlCl ₃ / iron(III) chloride / FeCl ₃ Conditional on correct reagent or a `near miss' eg acyl chloride ALLOW corresponding bromides (1) NOTE Reagent and catalyst in either order and they do not need to state which they are IGNORE Friedel-Crafts catalyst / Lewis acid catalyst /	aluminium or iron Additional	(2)

Question Number	Acceptable Answers	Reject	Mark
19(d)(ii)	ALLOW skeletal / displayed / structural formulae or any combination of these e.g. C ₆ H ₅ CH(OH)CH ₃		(1)

Question Number	Acceptable Answers	Reject	Mark
19(d)(iii)	If name and formula are given both must be correct		(1)
	Lithium aluminium hydride / LiAlH4 / lithium tetrahydridoaluminate((III)) / sodium borohydride / sodium tetrahydridoborate / NaBH4	Hydrogen with or without any catalyst	
	IGNORE solvents / temperature, even if incorrect	Water, if LiAlH4	

Question Number	Acceptable Answers	Reject	Mark
19(d)(iv)	If name and formula are given, both must be correct Phosphorus(V) chloride / phosphorus pentachloride / PCI5 / phosphorus(III) chloride / phosphorus trichloride / PCI3 / phosphorus and chlorine / P and Cl2 thionyl chloride /SOCl2 / conc hydrochloric acid / HCl and zinc chloride / ZnCl2 / zinc / Zn No TE on 19(d)(ii)	Just (Conc.) hydrochloric acid / HCl	(1)

(Total for Question 19 = 18 marks)

Question Number	Acceptable Answers		Reject	Mark
20(a)	$MnO_4^-(aq) + e^- \Rightarrow MnO_4^{2-}(aq)$	+0.56	Missing +	(1)
	$MnO_4^{2-}(aq) + 2H_2O(I) + 2e^{-} \rightleftharpoons MnO_2(s) + 4OH^{-}(aq)$	+0.59		
	Both correct for the mark			

Question Number	Acceptable Answers	Reject	Mark
20(b)	If name and formula are given, both must be correct		(4)
	A (Salt bridge containing a solution of) potassium nitrate / KNO ₃	KI NaI	
	ALLOW potassium chloride / KCl / sodium chloride / NaCl /sodium nitrate / NaNO ₃ (1)		
	B (Electrode made of) platinum /Pt (1) C (Solution containing) manganese(II) and manganese(III) ions /Mn ²⁺ and Mn ³⁺ ions		
	ALLOW Soluble salts of manganese(II) and manganese(III) ions (1)		
	(Essential condition) stand alone mark 1 mol dm ⁻³	Incorrect unit eg mol dm ³	
	ALLOW this if written in C		
	ALLOW `1 molar' / 1M / equal concentrations of Mn ²⁺ and Mn ³⁺ / manganese(II) and manganese(III) ions (1)		
	IGNORE any temperature or pressure		

Question Number	Acceptable Answers	Reject	Mark
20(c)(i)	$2Mn^{2+} + 5BiO_3^- + 14H^+ \rightarrow 2MnO_4^- + 5Bi^{3+} + 7H_2O$		(2)
	All correct formulae on both sides		
	ALLOW \rightleftharpoons (1)		
	Balancing correct formulae Conditional on all formulae correct		
	ALLOW multiples (1) IGNORE state symbols, even if incorrect IGNORE other equations as working before final equation		
	IGNORE electrons left in if they have been crossed through		
	Note: Balanced equation with uncancelled electrons or uncancelled H ⁺ ions / H ₂ O scores (1)		

Question Number	Acceptable Answers	Reject	Mark
20(c)(ii)	$(E_{cell}^{o} = 1.60 - 1.51 =) +0.09 V$	+0.1 V	(1)
	Sign, value and unit required		
	TE on incorrect starting oxidation state of manganese		
	For Mn ²⁺ to Mn ³⁺ $(E^{\circ}_{cell} = 1.60 - 1.49 =) +0.11 V$ For MnO ₂ to MnO ₄ ²⁻ $(E^{\circ}_{cell} = 1.60 - 0.59 =) +1.01 V$ For MnO ₄ ²⁻ to MnO ₄ ⁻ $(E^{\circ}_{cell} = 1.60 - 0.56 =) +1.04 V$		

Question Number	Acceptable Answers	Reject	Mark
20* (d)	NOTE This calculation involves 8 individual mathematical operations (see 1 to 8 below), 4 or each titration and an additional subtraction.		(5)
	The first mark is awarded for the first operation finding the number of moles of Fe ²⁺ ions from one of the titrations. The second mark is awarded after three further operations and then each subsequent mark for every other operation. The subtractions scores 1 mark on its own.		
	One possible suggested solution is as follows		
	For the original solution of A		
	1. Moles of MnO_4^- which reacts with 25 cm ³ of original solution A		
	$= \frac{16.80 \times 0.0195}{1000}$ = 3.276 x 10 ⁻⁴ (mol) (1)		
	2. Moles of Fe^{2+} in original solution		
	= Answer to 1 x 5 = 1.638×10^{-3} (mol)		
	3. Moles of Fe^{2+} in 500 cm ³ of original solution A		
	= Answer to 2 x 20 = 3.276×10^{-2} (mol) AND		
	4. Mass of Fe2+ in 500 cm ³ of original solution A		
	= Answer to 3×55.8 = 1.828 (g) (1)		
	ALLOW		
	The three operations (x 5, x 20 and x 55.8) in any order.		
	A_r Fe = 56 (instead of 55.8)		

For the fully reduced solution of A	(5)
5. Moles of MnO_4^- which reacts with 25 cm ³ of reduced solution $= \frac{18.20 \times 0.0195}{1000}$ $= 3.549 \times 10-4 \text{ (mol)}$	
AND	
6. Moles of Fe^{2+} in the fully reduced solution A = Answer to 1 x 5 = 1.7745 x 10-3 (mol) (1)	
7. Moles of Fe ²⁺ in 500 cm3 of the fully reduced solution A = Answer to 6 x 20 = $3.549 \times 10-2$ (mol)	
AND	
8. Mass of Fe ²⁺ in 500 cm ³ of reduced solution Y = Answer to 7 x 55.8 = 1.980342 (g) (1)	
Mass of Fe ³⁺ in original solution = Answer to 8 - Answer to 7 = 0.15288 (g) (1) ALLOW The three operations (x 5, x 20 and x 55.8) in any order.	
A_r Fe = 56 (instead of 55.8) ALLOW other methods	
IGNORE SF except 1SF	

(Total for Question 20 = 13 marks)

Question Number	Acceptable Answers	Reject	Mark
21(a)	Transition metals form at least one ion with an incomplete d-subshell / partially filled d orbital(s) ALLOW forms an ion with unpaired d electron(s) OR Scandium only forms an ion with an empty d-subshell / all d orbitals are empty OR Scandium does not form an ion with an incomplete d-subshell / partially filled d orbital(s) (1) Scandium (only) forms Sc ³⁺ ALLOW Sc only has one oxidation state (in compounds) (1) Sc^{3+} is [Ar] OR Sc is [Ar]3d ¹ 4s ² / [Ar]4s ² 3d ¹ and loses all three outer electrons ALLOW [Ar] written out as $1s^22s^22p^63s^23p^6$ (1)	d shell sub-shell / orbital other than 3d	(3)

Question Number	Acceptable Answers	Reject	Mark
21(b)	$\begin{split} \left[\text{Cr}(\text{H}_2\text{O})_6 \right]^{3^+} &+ 3\text{NH}_3 \rightarrow \\ & \text{Cr}(\text{OH})_3 + 3\text{H}_2\text{O} + 3\text{NH}_4^+ \\ \text{OR} \\ \left[\text{Cr}(\text{H}_2\text{O})_6 \right]^{3^+} &+ 3\text{NH}_3 \rightarrow \\ & \left[\text{Cr}(\text{OH})_3(\text{H}_2\text{O})_3 \right] + 3\text{NH}_4^+ \\ \text{Correct formula of chromium(III)} \\ \text{hydroxide} \\ \text{ALLOW } \left[\text{Cr}(\text{H}_2\text{O})_3(\text{OH})_3 \right] & (1) \\ \text{IGNORE square brackets} \\ \text{Rest of equation and balancing} \\ \text{Conditional on correct formula of} \\ \text{chromium(III)} \\ \text{hydroxide} & (1) \\ \text{IGNORE state symbols even if incorrect} \end{split}$	Any equation where NH ₃ replaces water ligands	(2)

Question Number	Acceptable Answers	Reject	Mark
Number 21(c)	ALLOW oxidation numbers written by formulae in equations First mark Reaction 1 is a redox reaction as chromium decreases / changes in oxidation number from (+)6 / VI to (+)3 / III (1) Second mark Reaction 2 is not a redox reaction as chromium has oxidation number (+)6(+) / VI in CrO ₄ ²⁻ and Cr ₂ O ₇ ²⁻ / reactant and product / both species (1) IGNORE change in oxidation number of iron		(2)

Question Number	Acceptable Answers	Reject	Mark
21(d)(i)	In both complexes:		(2)
	IGNORE charges on ions (Cl ⁻ or Cr ³⁺) inside the brackets		
	IGNORE exact position of dative bond from the water		
	Any complex ion showing the two chloride ligands in the `cis' positions where Cl-Cr-Cl bond angle is 90 ⁰		
	e.g. $\begin{bmatrix} C_{1} \\ H_{2}O \\ H_{2}O \\ H_{2}O \end{bmatrix}^{+}$ (1)		
	Any complex ion showing the two chloride ligands in the `trans' positions where CI-Cr-CI bond angle is 180 ⁰		
	e.g. $ \begin{bmatrix} H_2O \\ H_2O \\ H_2O \\ CI \\ OH_2 \end{bmatrix}^* $ (1)		
	ALLOW for one mark two diagrams with correct chlorine, but no water OR two diagrams with correct water, but no chlorines		
	ALLOW for one mark two diagrams with Cl_2 instead of Cl		

Question Number	Acceptable Answers	Reject	Mark
21(d)(ii)	dative(covalent) ALLOW co-ordinate (covalent/ bonding) (1) (formed from) the lone pair (of electrons) on the oxygen / chloride ion / ligand / water (to the chromium ion) (1) ALLOW "pair of electrons" for "lone pair"		2
	IGNORE element / molecule / atom		

Question	Acceptable Answers	Reject	Mark
Number		5	
21(d)(iii)	Working is essential		3
	mol of AgCl = 3.44/143.4 = 0.023989 (1)		
	ratio Cr^{3+} : (free Cl^-) (= 0.012: 0.023989) = 1 : 2	No TE on incorrect moles	
	ALLOW this written in words (1)		
	so, [CrCl(H2O)5] ²⁺ / (ion) Y (is formed) (1)		
	ALLOW structure of Y drawn		
	IGNORE SF except 1SF		
	ALLOW for two marks		
	Y if 178.8 used for Mr		
	X if 107.8 / 82.5 used for Mr		
	If no other mark is awarded:		
	ALLOW 1 mark for just		
	$[CrCl(H_2O)_5]^{2+}$ / (ion) Y (is formed)		

(Total for Question 21 = 14 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)	$C_9H_{11}NO_4$ ALLOW any order eg $C_9H_{11}O_4N$		(1)
	IGNORE any additional structural formulae as working		

Question Number	Acceptable Answers	Reject	Mark
22(b)	Must have N linked to CH ₃ CO HO HO HO HO HO HO HO HO HO H	Ethanoyl group joined to COOH group to form an anhydride	(1)
L	<u> </u>	1	1

Question Number	Acceptable Answers	Reject	Mark
22(c)	In each pair, the observation is conditional on a correct or `near miss' reagent	Incorrect formulae Additional incorrect tests	(2)
	Any matching pair from:		
	Sodium carbonate / Na_2CO_3 / sodium hydrogencarbonate / NaHCO ₃	Incorrect gas eg hydrogen	
	ALLOW other (metal) carbonates (1)		
	Effervescence/ fizzing/ bubbles		
	Gas turns lime-water cloudy (1)		
	IGNORE "gas given off"		
	OR Add ethanol/ alcohol and H_2SO_4 / strong acid(1)		
	Fruity smell/ pear drops / "glue smell" (1)		
	ALLOW 1 mark for sodium/ Na and fizzing		
	ALLOW 1 mark for phosphorus(V) chloride/PCl ₅ and steamy white fumes		
	IGNORE equations, even if incorrect		
	IGNORE indicators		

Question Number	Acceptable Answers	Reject	Mark
22(d)	$\begin{array}{c c} H & H & O & H & H & O \\ \hline & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ &$	Additional O in amide group One repeat unit / more than 2 repeat units	(2)
	(Tatal far Oua	stion 22 - 6 mar	1.0)

(Total for Question 22 = 6 marks)

Section C

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)		Penalise omission of (3)d once only.	(4)
	First mark d-subshell splits / d-orbitals split (in energy) / d energy level(s) split(s)	d-orbital/d- shell splits	
	(by the ligands) (1)	d-d splitting	
	Second mark Electron(s) promoted / excited (from lower) to higher energy levels / electron(s)move (from lower) to higher energy d orbitals		
	ALLOW d-d transitions (1)		
	Third mark Absorbing photons / energy of a certain frequency (in visible region)	Just`absorbing photons/energy'	
	ALLOW absorbing light (1)		
	Fourth mark Transmitted / remaining light is coloured		
	ALLOW complementary colour is seen		
	ALLOW reflected / transmitted / remaining light is seen (1)	Emitted	
	IGNORE "opposite" colour / reference to electrons relaxing / dropping to the ground state		

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	Sapphires / rubies / they contain different (metal) ions		(1)
	OR Electron transfer between different metal ions		
	OR The colour is caused by charge transfer		
	ALLOW some of the aluminium ions / Al ³⁺ have been replaced by chromium(III) ions / Cr ³⁺		
	ALLOW d-orbitals are split with a different energy gap		
	ALLOW different number of electrons in d- subshell		
	ALLOW different oxidation states (of chromium) have different colours	Different oxidation states of aluminium	
	IGNORE Different ligands		

Question Number	Acceptable Answers	Reject	Mark
*23(b)	First mark – diamond In diamond each carbon atom is covalently bonded to four other carbon atoms (in 3 dimensions) ALLOW diamond exists as a giant covalent structure with a tetrahedral arrangement (1)	Ionic / metallic bonding / any intermolecular forces	(3)
	Second mark - graphite Graphite has London / dispersion / van der Waals' forces between the layers (1)	Hydrogen bonding	
	Third mark - comparison The (covalent) bonds in diamond are stronger than the (London / dispersion / van der Waals' / (intermolecular) forces in graphite	London forces in diamond	
	OR Reverse argument (1)		
	ALLOW these marks on labelled diagrams		

Question Number	Acceptable Answers	Reject	Mark
23(c)(i)	ΔH_r C(diamond) \rightarrow C(graphite) +O2(g) +O2(g) -395.4 -393.5 CO2(g)		(2)
	$\Delta H = -395.4 - (-393.5)$ = - 1.9 (kJ mol ⁻¹)	–2 (kJ mol ⁻¹)	
	ALLOW O2(g) missing from cycle Correct answer, with or without cycle (1)	Incorrect units	
	Diagram must be consistent with sign in calculation One enthalpy level diagram	Two energy diagrams	
	enthalpy $C(diamond) + O_2(g)$ $C(graphite) + O_2(g)$ $CO_2(g)$		
	Both combustions to CO2 and graphite below diamond (1)		
	IGNORE missing enthalpy label and axis / O ₂ / state symbols		
	IGNORE activation energy curve		

Question Number	Acceptable Answers	Reject	Mark
23(c)(ii)	ΔS_{system} needed to give ΔS_{total} (which must be positive)		(1)
	ALLOW ΔS_{system} and ΔS_{total} needed		
	ALLOW If ΔS_{total} is positive, reaction is (thermodynamically) feasible		
	IGNORE references to activation energy / kinetic inertness		

Question Number	Acceptable Answers	Reject	Mark
23(d)(i)	sodium nitrite / sodium nitrate(III) / NaNO ₂ and hydrochloric acid / HCl / sulfuric acid / H ₂ SO ₄	Just sodium nitrate HNO ₃	(2)
	ALLOW nitrous acid / HNO ₂ (and hydrochloric acid / HCI) (1)	Incorrect formula with correct name or vice versa	
	IGNORE concentration of hydrochloric acid	Conc H_2SO_4	
	at 5 ^o C/ between 0 and 10 ^o C. Conditional on correct or 'near miss' reagents		
	ALLOW any temperature or range of temperatures within range /ice bath / less than 5/10 ⁰ C (1)		

Question Number	Acceptable Answers	Reject	Mark
23(d)(ii)	CH ₃	Missing `ring'	(1)
	СН3	Structure including OH	
	ALLOW skeletal formula		

Question Number	Acceptable Answers	Reject	Mark
23(d)(iii)	Note First mark can only be awarded if there is a partial justification		(2)
	Strong acid-weak alkali		
	ALLOW strong acid-strong alkali / named suitable acids and alkalis e.g. hydrochloric acid and (aqueous) ammonia		
	ALLOW base for alkali (1)		
	Conditional on M1 pK_{in} (for methyl red) is 5.1 / pH range (for methyl red) is 4.2-6.3 and this lies (wholly) within the vertical part of the titration curve		
	ALLOW pH at the end / equivalence point corresponds with the pH range (for methyl red)		
	ALLOW pK _{in} corresponds with the pH at the equivalence /end point (of the titration) / is in the middle of the vertical part of the titration curve		
	ALLOW Indicator changes colour (entirely) within vertical part of the titration curve (1)		

Question Number	Acceptable Answers	Reject	Mark
-	$[Fe(H_2O)_6]^{2+} + 6CN^- \rightarrow [Fe(CN)_6]^{4-} + 6H_2O$ OR $[Fe(H_2O)_6]^{2+} + 6KCN$ $\rightarrow [Fe(CN)_6]^{4-} + 6K^+ + 6H_2O$ OR $[Fe(H_2O)_6]^{2+} + 6KCN$ $\rightarrow K_4[Fe(CN)_6] + 2K^+ + 6H_2O$ OR $Fe^{2+} + 6CN^- \rightarrow [Fe(CN)_6]^{4-}$ OR $Fe^{2+} + 6KCN \rightarrow K_4[Fe(CN)_6] + 2K^+ (1)$ $IGNORE missing square brackets on complexes / state symbols$ $Ligand exchange / ligand substitution / ligand replacement \qquad (1)$ $Mark independently$		(2)

Question Number	Acceptable Answers	Reject	Mark
23(e)(ii)	(+)3 / 3+ / III / iron(III)		(1)
	ALLOW Fe ³⁺		

(Total for Question 23 = 19 marks)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL